欧美a级片视频-欧美a级片免费看-欧美a级大片-欧美a级成人淫片免费看-99久久网站-99久久视频

當前位置:首頁  >  技術文章  >  德勤報告 | 2018 AI趨勢:AI芯片更豐富,用機器學習的企業翻倍

德勤報告 | 2018 AI趨勢:AI芯片更豐富,用機器學習的企業翻倍

更新時間:2017-12-15  |  點擊率:2694

德勤報告 | 2018 AI趨勢:AI芯片更豐富,用機器學習的企業翻倍

2018 AI趨勢:AI芯片更豐富,用機器學習的企業翻倍

 

這是一個急速變化但又有很強發展銜接性的時代。

德勤在報告Technology, Media and ecommunications Predictions(科技、傳媒和通訊的預測)開頭這樣說。

 

這份報告中,德勤預測了增強現實(AR)、智能手機、AI芯片、機器學習、互聯網、數字傳媒等領域在2018年的大趨勢。總體來講,科技、傳媒和通訊領域內將呈現指數級進步,生活中的方方面面也將發生不易察覺的變化。

 

這份報告長達80頁,我們將其中與人工智能相關的兩部分編譯整理如下。在2017年的尾巴,我們提前去2018年預覽一下。

  AI芯片

 

強大的運算力對訓練和推理神經網絡來說*。

 

2009年,*塊GPU問世,這種專門為密集型計算、高度并行計算設計的芯片,比CPU更能滿足機器學習任務的要求。自此,越來越多的類型開始豐富“AI芯片”這個新名詞。

德勤預測,2018年,GPU和CPU仍是機器學習領域的主流芯片。

 

GPU的市場需求量大概在50萬塊左右,在機器學習任務中對FPGA的需求超過20萬塊,而ASIC芯片的需求量在10萬塊左右。

 GPU、FPGA和ASIC芯片需求與2016年對比圖

在年底,超過25%的數據中心中用來加速機器學習的芯片將為FPGA和ASIC芯片。

 FPGA和ASIC芯片的*超過25%

那么,每種類型的芯片到底向什么方向發展,德勤給出了詳細的預測:

機器學習優化的GPU:在2018年,GPU制造者將推出專門優化機器學習任務的特別版GPU。其實現在已經能看到這樣的案例,英偉達稱自己的Volta架構將使深度學習訓練加速12倍,在深度學習推理任務上比Pascal架構還要快6倍。

 

機器學習優化的CPU:在GPU市場蒸蒸日上的同時,我們也可以看到CPU公司推出機器學習的CPU芯片。比如英特爾Knights Mill芯片,比非機器學習優化芯片的性能提升了4倍。

 

機器學習優化的FPGA:在2016年,FPGA芯片的銷售額已經超過40億美元。在2017年年初報告《Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?》中,研究人員表示在某些情況下,FPGA的速度和運算力可能比GPU還要強。

 

目前,微軟、亞馬遜AWS和百度也稱將FPGA用于機器學習的相關任務中。總體來說,2018年機器學習任務對FPGA的需求超過了20萬。

 

機器學習優化的ASIC芯片:ASIC是只執行單一任務的芯片,目前ASIC芯片的制造廠商很多。在2017年,整個產業的總收益大約在150億美元左右。

 

綜合各芯片廠商放出的消息,英特爾的收購的Nervana,能在2018年生產出自己的芯片。此外,日本富士通也計劃在2018年推出一款名為深度學習單元(DLU)的芯片。

 

TPU:TPU是谷歌為適應機器學習任務推出的ASIC芯片,適用于處理在開源的TensorFlow中的任務。在谷歌數據中心的推理任務中,TPU已經顯示出良好的性能,和CPU相比,性能可以提升10到50倍。據谷歌預測的數據顯示,2018年對TPU的需求大約在10萬塊左右。

 

低能耗機器學習加速芯片:德勤預測,在2018年,手機、平板和其他移動設備對機器學習芯片的需求量在5億左右。移動端芯片的zui大特點就是低能耗,GPU芯片的功率大致在250瓦左右,相比之下TPU芯片需要的功率僅為75瓦。對傳感器網絡來說,所需功率需要低于10毫瓦。

 

德勤預測,可能再過兩三年,低功率的機器學習芯片才能有突破性進展。

 

光流芯片:除了上面幾種,還有一種特殊的芯片類型,IBM的True North芯片就是一種光流芯片,它能加速機器學習任務,并且非常。不過德勤表示,現在還很難預測這種光流芯片在2018年的體量,但整體來說可能低于10萬塊,甚至低于1萬塊。

 

  機器學習

 

德勤預測,在2018年,大中型企業將更加看重機器學習在行業中的應用。和2017年相比,用機器學習部署和實現的項目將翻倍,并且2020年將再次翻倍。

 翻倍再翻倍

 

在報告中,德勤重點提出了讓機器學習更廣泛應用企業中的5個重要推動力,分別為數據科學的自動化、訓練數據需求的減少、訓練速度的加快、解釋結果和本地部署等。

 

1. 數據科學自動化:像數據開發和特征工程這種耗時的機器學習任務,可能會占用數據科學家80%的時間。好消息是,這種繁瑣的工作正在逐步被自動化取代。從耗時的工作解放出來后,數據科學家執行機器學習試驗的時間從幾個月縮短到了幾天。自動化在一定程度上緩解了數據科學家的短缺,為企業賦予和更多活力。

 

2. 減少訓練數據的需求:訓練一個機器學習模型可能需要數以百萬計的數據元素,為訓練數據獲取標記數據也是一件耗時且成本高的事情。目前,已經涌現出致力于減少機器學習需要的訓練數據的技術,包括數據合成、算法生成的模擬真實數據特征等。

 

3. 加速訓練:正如上面所說,像GPU、FPGA等機器學習專有硬件的出現可以縮短機器學習模型的訓練時間,加速研究進展。

 

4. 解釋結果:雖然機器學習的進展日新月異,但機器學習模型通常存在關鍵缺陷,比如黑箱,意味著我們無法解釋其中的原理。這些不清楚讓模型無法適應更多的應用。如果黑箱消失、結果都可解釋,是機器學習應用的一大進步。

 

5. 本地部署:機器學習將隨著部署能力一同成長。德勤去年曾經預測,機器學習正在走進移動設備和智能傳感器,帶來智能家庭、智慧城市、無人駕駛、可穿戴技術和物聯網技術。

 

像谷歌、微軟、Facebook等科技*正在嘗試將機器學習模型壓縮到便攜設備上,比如谷歌的TensorFlow Lite、Facebook的Caffe2Go和蘋果的Core ML。

欧美日本免费| 国产国语在线播放视频| 91麻豆高清国产在线播放| 九九免费高清在线观看视频| 欧美另类videosbestsex高清| 欧美a级大片| 成人免费一级纶理片| 国产不卡在线观看视频| 亚洲精品久久久中文字| 久久久久久久男人的天堂| 天天色成人网| 麻豆系列 在线视频| 日韩av成人| 国产精品免费久久| 九九久久99| 91麻豆高清国产在线播放| 欧美一级视| 国产一区二区精品| 久久精品人人做人人爽97| 一级女性全黄久久生活片| 国产亚洲精品aaa大片| 成人a大片在线观看| 91麻豆精品国产自产在线| 久久国产一久久高清| 青青久久国产成人免费网站| 精品视频免费在线| 九九干| 九九精品久久| 日本在线不卡免费视频一区| 久久久久久久久综合影视网| 国产韩国精品一区二区三区| 国产麻豆精品免费密入口| 国产91精品系列在线观看| 亚洲爆爽| 99久久精品国产免费| 欧美激情一区二区三区视频高清 | 二级片在线观看| 欧美国产日韩精品| 日韩在线观看视频网站| 久久精品免视看国产成人2021| 青青青草影院| 国产视频网站在线观看| 国产国语对白一级毛片| 久久福利影视| 日本免费乱人伦在线观看| 亚洲天堂免费观看| 精品久久久久久中文| 久久久久久久男人的天堂| 国产a一级| 沈樵在线观看福利| 欧美激情一区二区三区视频 | 日日日夜夜操| 国产韩国精品一区二区三区| 欧美日本国产| 黄视频网站在线看| 亚洲天堂免费| 一本高清在线| 美国一区二区三区| 日韩在线观看视频免费| 免费国产在线视频| 99久久网站| 午夜激情视频在线播放| 国产a一级| 99色视频| 日韩专区在线播放| 精品久久久久久免费影院| 欧美日本免费| 成人影院一区二区三区| 天天做人人爱夜夜爽2020毛片| 欧美激情一区二区三区在线播放 | 国产成人精品综合在线| 美女免费精品视频在线观看| 亚洲女人国产香蕉久久精品| 欧美激情一区二区三区在线播放 | 在线观看成人网 | 成人免费观看的视频黄页| 台湾毛片| 精品国产香蕉在线播出| 在线观看成人网| 韩国三级香港三级日本三级| 欧美国产日韩精品| 日韩专区在线播放| 成人免费高清视频| 国产精品1024永久免费视频| 国产不卡在线看| 999精品在线| 亚洲精品影院| 日韩一级黄色| 欧美大片一区| 中文字幕一区二区三区精彩视频| 一级女人毛片人一女人| 亚洲精品久久久中文字| 亚洲wwwwww| 国产91精品一区| 成人高清免费| 一级毛片视频播放| 精品国产三级a| 毛片电影网| 成人高清免费| 成人免费高清视频| 亚洲wwwwww| 99热精品一区| 日本在线不卡视频| 成人影院一区二区三区| 国产精品1024永久免费视频| 国产一区二区精品| 亚洲精品中文字幕久久久久久| 国产网站免费视频| 精品久久久久久综合网| 国产韩国精品一区二区三区| 国产福利免费观看| 四虎影视久久| 精品国产三级a∨在线观看| 欧美日本二区| 美女免费毛片| 国产视频久久久| 在线观看成人网 | 999久久狠狠免费精品| 91麻豆tv| 亚洲天堂免费| 精品视频在线观看一区二区三区| 91麻豆精品国产高清在线 | 日韩av东京社区男人的天堂| 色综合久久手机在线| 中文字幕一区二区三区 精品| 亚欧成人乱码一区二区| 日韩在线观看免费| 国产网站免费| 成人免费观看男女羞羞视频| 国产视频在线免费观看| 欧美爱爱网| 你懂的国产精品| 免费国产在线观看不卡| 精品视频在线观看一区二区| 99久久精品国产免费| 精品毛片视频| 久久99中文字幕| 二级特黄绝大片免费视频大片| 久久久久久久免费视频| 欧美1区2区3区| 国产91丝袜在线播放0| 成人高清免费| 成人免费观看男女羞羞视频| 亚欧视频在线| 欧美激情一区二区三区视频 | 99久久精品国产高清一区二区| 韩国毛片基地| 四虎影视久久| 欧美激情中文字幕一区二区| 欧美a级片免费看| 亚洲天堂免费观看| | 国产福利免费观看| 国产激情一区二区三区| 国产91素人搭讪系列天堂| 999精品在线| 国产一区二区福利久久| 欧美a级片免费看| 久久久成人网| 台湾毛片| 久久久久久久男人的天堂| 久久精品人人做人人爽97| 国产一区二区精品久久| 日韩一级黄色| 美女免费精品视频在线观看| 日韩在线观看视频黄| 国产不卡高清| 久久国产精品永久免费网站| 亚洲第一页色| 成人a级高清视频在线观看| 欧美a免费| 国产一区二区精品在线观看| 免费毛片基地| | 99色视频在线| 日韩专区一区| 国产a毛片| 国产精品123| 精品视频在线看| 精品国产香蕉在线播出| 国产91精品系列在线观看| 国产麻豆精品高清在线播放| 天堂网中文在线| 欧美电影免费| 日韩专区第一页| 精品视频在线看| 日韩一级黄色| 九九精品在线| a级毛片免费观看网站| 国产激情一区二区三区| 999久久狠狠免费精品| 成人免费观看视频| 精品久久久久久中文字幕2017| 国产国语在线播放视频| 欧美另类videosbestsex高清| 精品国产一区二区三区国产馆| 可以免费看毛片的网站| 精品久久久久久中文| 久久国产精品自由自在| 四虎影视久久久|